
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02257-2
Eur. Phys. J. C 42, 183–190 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Quantum chaos in the Yang–Mills–Higgs system
at finite temperature

D.U. Matrasulov1,2,a, F.C. Khanna1, U.R. Salomov3, A.E. Santana4

1 Physics Department University of Alberta, Edmonton Alberta, T6G 2J1 Canada
2 TRIUMF, 4004 Wersbrook Mall, Vancouver, British Columbia, V6T2A3 Canada
3 Heat Physics Department of the Uzbek Academy of Sciences, 28 Katartal St.,700135 Tashkent, Uzbekistan
4 Instituto de Fisica, Universidade be Brasilia, 70910-900, Brasilia, DF, Brazil

Received: 18 August 2004 / Revised version: 23 March 2005 /
Published online: 22 June 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. Quantum chaos in the finite-temperature Yang–Mills–Higgs system is studied. The energy spec-
trum of a spatially homogeneous SU(2) Yang–Mills–Higgs system is calculated within thermofield dynam-
ics. Level statistics of the spectra is studied by plotting nearest-level spacing distribution histograms. It is
found that finite-temperature effects lead to a strengthening of chaotic effects, i.e. a spectrum which has
the Poissonian distribution at zero temperature has the Gaussian distribution at finite temperature.
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1 Introduction

Quantum chaos is a relatively new area in physics and
has been the subject of extensive studies for the last two
decades [1–6]. It has found applications in atomic and
molecular physics, nuclear physics and condensed matter
physics. In the past few years there is a growing inter-
est in quantum chaos in particle physics, too. Being the
quantum theory of classically chaotic systems the quan-
tum chaology studies fluctuations in the energy spectra
and wave functions of such systems. It is well known that
the energy spectra of systems whose classical counterparts
are chaotic have the same statistical properties as those
for random matrices. Therefore one of the main topics
in the quantum chaology is to study the statistical prop-
erties of the classically chaotic systems. Recently energy
fluctuations and quantum chaos in hadrons and QCD have
become a subject of theoretical studies [7–12]. In partic-
ular, it is found that the quark–gluon system in QCD is
governed by quantum chaos in both confined and decon-
fined phases [8,9]. The statistical analysis of the measured
meson and baryon spectra shows that the quantum chaos
phenomenon occurs in these systems [10]. The study of
the charmonium spectral statistics and its dependence on
color screening has established the quantum chaotic be-
havior [7]. It was claimed that such a behavior could be
the reason for J/Ψ suppression [7].

In recent years there has been considerable interest to
determine the role of dynamical chaos in field theories [13–
21]. Chaotic properties of Yang–Mills [13,15], Yang–Mills–
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Higgs [15–19] and Abelian Higgs [20] systems have been
treated. The main point in these considerations is the fact
that the Hamiltonians of the Yang–Mills and Yang–Mills–
Higgs systems can be written in the same form as those
for the coupled non-linear oscillators. This allows one to
use for their treatment the same methods as in the case
of coupled non-linear oscillators. Quantum chaos in Yang–
Mills–Higgs system was also studied recently [22,23]. How-
ever, all works on chaos in field theories and hadrons are
restricted to considering the zero-temperature cases.

In this paper we study quantum chaos at finite temper-
ature in the Yang–Mills–Higgs system. Recent advances
in heavy ion collision experiments allow one to create hot
and dense hadronic and quark–gluon matters. The role of
finite-temperature effects in such systems becomes impor-
tant. Especially in quark–gluon or nuclear matter hadrons
behave as complex systems where strong level fluctua-
tions can be observed. Thus the role of finite-temperature
effects as well as level fluctuations are crucial in such
a systems, which obviously leads to a need for study-
ing quantum chaos at finite temperature. In particular,
finite-temperature effects cause fluctuations in their en-
ergy spectra.

We address the problem of the heat-bath in quantum
chaos through the thermofield dynamics (TFD) formal-
ism, a real time finite-temperature field theory [24–28].
TFD is interesting for our proposal here by its remarkable
algebraic structure (this is not the case for the Matsub-
ara [29] or the Schwinger–Keldysh [30] formalisms). Ac-
tually the central ideas of TFD involve an algebraic dou-
bling in the degrees of freedom and a Bogolyubov trans-
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formation giving rise to the thermal variables. As we will
show, this TFD prescription is a useful tool to explore
finite-temperature effects in the energy fluctuations of the
Yang–Mills–Higgs Hamiltonian, represented in terms of
the annihilation and creation operators.

In Sect. 2 we present the Yang–Mills–Higgs system at
zero temperature. In Sect. 3 the Yang–Mills–Higgs system
at finite temperature is studied using the TFD formalism.
In Sect. 4 we present numerical results for finite tempera-
ture and compare them to zero-temperature results, thus
bringing out the crucial role of a finite temperature in the
Yang–Mills–Higgs system and quantum chaos. Finally in
Sect. 5 we present some conclusions and new directions to
pursue the important question of quantum chaos.

2 Zero-temperature case

The Lagrangian for a Yang–Mills–Higgs system with
SU(2) symmetry is given by

L = −1
4
F a

µνFµν
a +

1
2
(Dµφ)+(Dµφ) − V (φ), (1)

where

F a
µν = ∂µAa

ν − ∂νAa
µ + gAb

µAc
ν ,

(Dµφ) = ∂µφ − igAb
µT bφ,

with T b = σ/2, b = 1, 2, 3 generators of the SU(2) algebra,
and g is a coupling constant. The potential of the scalar
(Higgs) field is

V (φ) = µ2|φ|2 + λ|φ|4,
where µ and λ are constants. Here we give a brief descrip-
tion of the non-thermal case [22]. In (2 + 1)-dimensional
Minkowski space and for spatially homogeneous Yang–
Mills and Higgs fields which satisfy the conditions

∂iA
a
µ = ∂iφ = 0, i = 1, 2,

and in the gauge Aα
0 = 0, the Lagrangian can be written

as

L = φ̇2 +
1
2
(Ȧ2

1 + Ȧ2
1)

− g

[
1
2
A2

1A
2
2 − 1

2
(A1A2)2 + (A2

1 + A2
2)φ

2

− (A1φ)2 − (A2φ)2
] − V (φ), (2)

where φ = (φ1, φ2, φ3), A1 = (A1
1, A

2
1, A

3
1) and A2 =

(A1
2, A

2
2, A

3
2).

To treat the chaotic dynamics it is convenient to use
the canonical formalism and work with the Hamiltonian
of the system instead of the Lagrangian. The Hamiltonian
of the system can be written as [22]

H =
1
2
(p2

1 + p2
2) + g2v2(q2

1 + q2
2) +

1
2
g2q2

1q2
2 , (3)

where φ0 = (0, 0, v) q1 = A1
1, q2 = A2

2 (the other com-
ponents of the Yang–Mills fields are zero) p1 = q̇1 and
p2 = q̇2, with ω2 = 2g2v2 being the mass term of the
Yang–Mills field. This is the Hamiltonian of the classical
system. Replacing pi and qi by operators and introducing
the following creation and destruction operators:

âk =
√

ω

2
q̂k + i

√
1
2ω

p̂k, â+
k =

√
ω

2
q̂k − i

√
1
2ω

p̂k,

we obtain the corresponding quantum Hamiltonian:

H = H0 +
1
2
g2V, (4)

where

H0 = ω(a1a
+
1 + a2a

+
2 + 1),

and

V =
1

4ω2 (a1 + a+
1 )2(a2 + a+

2 )2,

with ω2 = 2g2v2, and the operators âk and â+
l satisfy

the commutation relations [âk, â+
l ] = δkl, k, l = 1, 2. The

eigenvalues of this Hamiltonian are calculated by numer-
ical diagonalization of the truncated matrix of the quan-
tum Yang–Mills–Higgs Hamiltonian in the basis of the
harmonic oscillator wave functions [22]. The matrix ele-
ments of H0 and V are

〈n′
1, n

′
2|H0|n1, n2〉 = ω(n1 + n2 + 1)δn′

1n1δn′
2n2 ,

and

〈n′
1, n

′
2|V |n1, n2〉 =

1
4ω2

×
{√

n1(n1 − 1)δn′
1n1−2

+
√

n1(n1 − 1)δn′
1n1+2 + (2n1 + 1)δn′

1n1

}

×
{√

n2(n2 − 1)δn′
2n2−2

+
√

n2(n2 − 1)δn′
2n2+2 + (2n2 + 1)δn′

2n2

}
.

The numerical procedure for the diagonalization of this
matrix is described by Salasnich [22]. We use the same
method in the case of finite-temperature calculations.

3 Finite-temperature case

To treat quantum chaos in the finite-temperature Yang–
Mills–Higgs system, we apply thermofield dynamics
(TFD). TFD is a real time operator formalism of quantum
field theory at finite temperature in which any physical
system can be constructed from a temperature-dependent
vacuum |0(β)〉 which is a pure state. The thermal aver-
age of any operator is equal to the expectation value be-
tween the pure vacuum state |0(β)〉, defined by applying
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Bogolyubov transformations to the usual vacuum state.
Furthermore, TFD has two main features. The first one
is the doubling of the Fock space such that the original
Fock space and its double are defined as non-tilde and
tilde space respectively. All operators are also doubled,
and the finite-temperature creation and annihilation op-
erators are constructed by a Bogoluybov transformation
between tilde and non-tilde operators. This is the same
procedure as in writing down the vacuum state at finite
temperature. Mathematically, the field operators have the
following properties:

(AiAj )̃ = ÃiÃj ,

(cAi + Aj )̃ = c∗Ãi + Ãj ,

(A∗
i )̃ = (Ãi)+,

(Ãi)̃ = Ai,

[ÃiAj ] = 0.

The Yang–Mills–Higgs Hamiltonian in TFD is given
as

Ĥ = H − H̃, (5)

where H is given by (4) and H̃ is given as

H̃ = H̃0 +
1
2
g2Ṽ ,

with

H̃0 = ω(ã1ã
+
1 + ã2ã

+
2 + 1),

and
Ṽ =

1
4ω2 (ã1 + ã+

1 )2(ã2 + ã+
2 )2. (6)

It has been established [31] that in an algebraic ap-
proach the doubled set of operators may be considered as
a set of operators that relate to the physical observables,
O, and a second set that are generators of symmetries,
Ô. The hat operators are responsible, in particular, for
the time development and are needed for the purpose of
scattering, decay and any transitions between states. The
physical observables lead to the quantities that are mea-
sured in experiment. Both for physical observables and
generators of symmetry after Bogolyubov transformations
leading to finite-temperature creation and annihilation op-
erators and to a pure vacuum state, only the non-tilde
operators are required for getting the appropriate matrix
elements. However, it is clear that for an analysis of any
system at finite temperature both set of operators, O and
Ô, are needed since it is important to generate the appro-
priate symmetry of the system in any time development
while considering the matrix element we have decided to
investigate the chaotic behavior for the Hamiltonian that
relates to the physical observables H and the Hamiltonian
that generates the symmetry of the system, Ĥ. Results of
the finite-temperature quantum chaos in the Yang–Mills–
Higgs system will be displayed for the physical observ-
ables, and for the generators of symmetry, Ĥ. Only then
we will draw conclusions about the approach of quantum

chaotic behavior in the finite-temperature quantum field
theory case of Yang–Mills–Higgs theory.

First we need to rewrite the non-tilde part of the
Hamiltonian in the temperature-dependent form using the
Bogolyubov transformations which are given by

ak = ak(β)coshθ + ã+
k (β)sinhθ,

a+
k = a+

k (β)coshθ + ãk(β)sinhθ,

ãk = a+
k (β)sinhθ + ãk(β)coshθ,

ã+
k = ak(β)sinhθ + ã+

k (β)coshθ,

where

β =
ω

kBT
,

where the tilde and non-tilde creation and annihilation
operators satisfy the following commutation relations:

[ak(β), a+
l (β)] = δkl, [ãk(β), ã+

l (β)] = δkl.

We have l, k = 1, 2 and sinh2θ = (eβ − 1)−1. All other
commutation relations are zero.

Then the temperature-dependent forms of H0 and H̃0
are

H0 = ω
{
(F1 + F2)cosh2θ

+ (L1 + L2)sinh2θ + (S1 + S2)coshθsinhθ + 1
}

,

H̃0 = ω
{
(F1 + F2)sinh2θ

+ (L1 + L2)cosh2θ + (S1 + S2)coshθsinhθ + 1
}

,

where

Fk = a+
k (β)ak(β),

Lk = ãk(β)ã+
k (β),

Sk = a+
k (β)ã+

k (β) + ã+
k (β)ak(β).

For V and Ṽ we have

V =
1

4ω2

{
A1cosh2θ + B1coshθsinhθ + C1sinh2θ

}
× {

A2cosh2θ + B2coshθsinhθ + C2sinh2θ
}

,

Ṽ =
1

4ω2

{
A1sinh2θ + B1coshθsinhθ + C1cosh2θ

}
× {

A2sinh2θ + B2coshθsinhθ + C2cosh2θ
}

,

where

Ak = (ak(β) + a+
k (β))2,

Bk = (ak(β) + a+
k (β))(ã+

k (β) + ãk(β))

+ (ã+
k (β) + ãk(β))(ak(β) + a+

k (β)), (7)

and

Ck = (ã+
k (β) + ãk(β))2.

In the first approach the energy eigenvalues of the ther-
mal Yang–Mills–Higgs system can be calculated by diag-
onalization of the following matrix:

R = 〈n′
1n

′
2, ñ

′
1ñ

′
2|H0 +

1
2
g2V |n1n2, ñ1ñ2〉. (8)
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The elements of the matrix can be calculated explicitly:

〈n′
1n

′
2, ñ

′
1ñ

′
2|H0|n1n2, ñ1ñ2〉

= ω
{
(n1 + n2 + 1)(1 + 2sinh2θ)δn′

1n1δn′
2n2

+
{
n1δn′

1n1−1δn′
2n2 + n2δn′

2n2−1δn′
1n1

+ (n1 + 1)δn′
1n1+1δn′

2n2

+ (n2 + 1)δn′
2n2+1δn′

1n1)
}

coshθsinhθ
}

,

and for V

〈n′
1n

′
2, ñ

′
1ñ

′
2|V |n1n2, ñ1ñ2〉

=
1

4ω2 〈n′
1n

′
2, ñ

′
1ñ

′
2|

{
A1A2cosh4θ + C1C2sinh4θ

+ (A1C2 + B1B2 + C1A2)cosh2θsinh2θ

+ (A1B2 + B1A2)cosh3θsinhθ

+ (B1C2 + C1B2)coshθsinh3θ
} |n1n2, ñ1, ñ2〉. (9)

The matrix elements of Ak, Bk and Ck are given as

〈n′
1n

′
2, ñ

′
1ñ

′
2|Ak|n1n2, ñ1ñ2〉

=
√

nk(nk − 1)δn′
knk−2 + (2nk + 1)δn′

knk

+
√

(nk + 1)(nk + 2)δn′
knk+2,

〈n′
1n

′
2, ñ

′
1ñ

′
2|Bk|n1n2, ñ1ñ2〉

= 2nkδn′
knk−1 + (2nk + 1)δn′

knk+1,

and

〈n′
1n

′
2, ñ

′
1ñ

′
2|Ck|n1n2, ñ1ñ2〉

=
√

nk(nk − 1)δn′
knk−2 + (2nk + 1)δn′

knk

+
√

(nk + 1)(nk + 2)δn′
knk+2.

The calculation of the matrix element of Ĥ, the gen-
erator of symmetry, gives us the following matrix:

Z = 〈n′
1n

′
2, ñ

′
1ñ

′
2|H − H̃|n1n2, ñ1ñ2〉

= ω
{−(2cosh2θ)δn′

1n1δn′
2n2

+ (n1 + n2)δn′
1n1δn′

2n2

}

+
g2

2ω2 cosh4θ
{√

n1(n1 − 1)δn′
1n1−2 + (2n1 + 1)δn′

1n1

+
√

(n1 + 1)(n1 + 2)δn′
1n1+2

}
. (10)

Diagonalizing the matrices R and Z numerically we ob-
tain the energy eigenvalues of the Yang–Mills–Higgs sys-
tem for the Hamiltonians H and Ĥ at finite temperature.
As it was mentioned [19] the numerical energy levels de-
pends on the dimension of the truncated matrix. We com-
pute the numerical levels in double precision. The matrix
dimension is 1156 × 1156, i.e. we calculate the first 1156
eigenvalues. Then the statistical properties of the spectra
are found. We use standard unfolding procedure in order
to remove the secular variation of the level density as a
function of the energy E, for each value of the coupling
constant the corresponding spectrum is mapped, by a nu-
merical procedure described in [33].

One of the main characteristics of the statistical prop-
erties of the spectra is the level spacing distribution [2,3]
function. In this work we calculate the nearest-neighbor
level spacing distribution [2–4,7]. The nearest-neighbor
level spacings are defined as Si = Ẽi+1 − Ẽi, where Ẽi

are the energies of the unfolded levels, which are obtained
in the following way. The spectrum {Ei} is separated into
a smoothed average part and fluctuating parts. Then the
number of the levels below E is counted and the following
staircase function is defined:

N(E) = Nav(E) + Nfluct(E).

The unfolded spectrum is finally obtained with the
mapping

Ẽi = Nav(Ei).

Then the nearest level spacing distribution function
P (S) is defined as the probability of S lying within the
infinitesimal interval [S, S + dS].

For the quantum systems which are chaotic in the clas-
sical limit this distribution function is the same as that of
the random matrices [2,4]. For systems which are regular
in the classical limit its behavior is close to a Poissonian
distribution function. This distribution is usually taken to
be a Gaussian with a parameter d:

P (H) ∼ exp
(−Tr

{
HH+}

/2d2) ,

and the random matrix ensemble corresponding to this
distribution is called the Gaussian ensemble. For Hamil-
tonians invariant under rotational and time-reversal trans-
formations the corresponding ensemble of matrices is
called the Gaussian orthogonal ensemble (GOE). It was
established [2–4] that GOE describes the statistical fluc-
tuation properties of a quantum system whose classical
analog is completely chaotic. The nearest-neighbor level
spacing distribution for GOE is described by the Wigner
distribution:

P (S) =
1
2

πS exp
(

−1
4

πS2
)

. (11)

The usual way to study the level statistics is to compare
the calculated nearest-neighbor level spacing distribution
histogram with the Wigner distribution.

For systems whose classical motion is neither regular
nor fully chaotic (mixed dynamics) the level spacing distri-
bution will be intermediate between the Poisson and GOE
limits. Several empirical functional forms for the distribu-
tion have been suggested for this case [4]. If the Hamilto-
nian is not time-reversal invariant, irrespective of its be-
havior under rotations, the Hamiltonian matrices are com-
plex Hermitian and the corresponding ensemble is called
a Gaussian unitary ensemble (GUE). If the Hamiltonian
of the system is time-reversal invariant but not invariant
under rotations, then the corresponding ensemble is called
the Gaussian symplectic ensemble. In the next section we
will study the numerical results for the level spacing and
then analyze them to classify them in one of the these cat-
egories. It is to be emphasized that our Yang–Mills–Higgs
Hamiltonian is time-reversal and rotational invariant.
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4 Numerical results

On diagonalizing the vacuum expectation value of the
Hamiltonian H, the physical observables, and Ĥ, the gen-
erator of symmetry, given in (8) and (10), respectively the
spectra are analyzed by considering the level spacing dis-
tribution. Then the criterion mentioned in the last section
allows us to classify the system as chaotic or non-chaotic.
In Figs. 1 and 2 we plot the level spacing distributions for
different values of the parameters ω and θ for the energy
spectrum calculated by diagonalizing of the matrix R. In
Fig. 1 this distribution is given for the value ω = 0.92 for
which the non-thermal case level spacing distribution is
chaotic [22]. As is seen from this figure for θ = 0 it is the
same as the results of non-thermal calculations [22]. By
increasing the temperature it becomes closer to a Gaus-
sian distribution that means strengthening of chaos in the
thermal case. In Fig. 2 the level spacing distribution for
ω = 0.01 is plotted. For this value of ω the systems is reg-
ular at θ = 0. However the increase of temperature leads
to a chaotization of the system and P (S) becomes closer
to the Gaussian distribution. Figures 3 and 4 present level
spacing distributions (for the same values of parameters as
in Figs. 1 and 2) for the spectrum calculated by diagonal-
izing of the matrix Z. By comparing Figs. 1 and 2, and 3
and 4, it is clear that at zero temperature the level spacing
distributions are the same for both methods. By increas-
ing the temperature, the difference between the spacing
distributions for different methods becomes considerable.
It is clear from Figs. 1 and 2 that the level spacing distri-
bution for ω = 0.92, θ = 0.01 is closer to the Gaussian
distribution compared to the ones for ω = 0.01, θ = 0.01.
The same behavior can be seen in histograms for ω = 0.92,
θ = 0.2 and ω = 0.01, θ = 0.2. The reason for such behav-
ior can be understood from Fig. 5 where the temperature
T is plotted as a function of θ for various values of ω. It
is clear that higher values of ω correspond to higher tem-
peratures, while for smaller values of ω the temperature
is also small.

However, for ω = 0.92 the difference between the re-
sults for H and Ĥ is small while for ω = 0.01 there is
considerable difference in the results even for θ = 0.01
(see Figs. 2 and 4). This indicates that the results from
H, physical observables and Ĥ, the generators of symme-
try, are quite similar at high temperature while at low
temperature the results are quite different. We know that
at zero temperature H and Ĥ perform different functions.
But the results indicate that at high temperature their
chaotic behavior is similar.

Thus in both cases increasing the temperature leads to
a smooth transition from a Poissonian to a Gaussian form
in the level spacing distribution. Furthermore, at higher
temperatures both H and Ĥ lead to quite similar results.

5 Conclusion

Summarizing, we have treated quantum chaos in gauge
fields at finite temperature using a toy model, the SU(2)

Fig. 1. The level spacing histograms for the Yang–Mills–Higgs
system for the value of parameter ω = 0.92

Yang–Mills–Higgs system. To account for the finite-
temperature effects we used the thermofield dynamics
technique. The need for simultaneous exploration of the
level fluctuations and the finite-temperature effects is dic-
tated by recent advances in relativistic heavy ion collision
experiments, that allow for the creation of hot and dense
quark–gluon and hadronic matter [32].

The lattice QCD calculations of hadronic matter and
quark–gluon matter indicate that both systems exhibit
strong chaotic dynamics [8,11]. The present calculations
in a toy model appear to support such conclusions. Fur-
thermore the study of the Yang–Mills–Higgs system at
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Fig. 2. The level spacing histograms for the Yang–Mills–Higgs
system for the value of parameter ω = 0.01

finite temperature establishes clearly that an increase of
the temperature of the system strengthens level fluctua-
tions in the spectra. Then a transition from the Poissonian
to a Gaussian level spacing distribution does occur. It is to
be anticipated that a study of the quark–gluon system in
the relativistic heavy ion collisions at RHIC and later on
at LHC would show the phenomenon of quantum chaos in
a quantum field theoretic system. It is to be emphasized
that a proper study in (3+1) dimensions with full details
of the Yang–Mills non-abelian field along with the Higgs
scalar field is needed to make necessary conclusions for a

Fig. 3. The level spacing histograms for the Yang–Mills–Higgs
system for the value of parameter ω = 0.92

quark–gluon plasma. However the present study provides
an indication of the possible outcome in more realistic
studies.

Finally it is interesting to summarise the results for
Yang–Mills, Yang–Mills–Higgs and Yang–Mills–Higgs at
finite temperature systems. It has been established that
as the parameter, v, is increased, the role of Higgs is in-
creased and this leads to a chaotic-to-regular system tran-
sition. A pure Yang–Mills system is chaotic in nature.
The Higgs field leads to a less chaotic system. However
the temperature leads to an increase in the random mo-
tion of particles. Thus it is anticipated that a Yang–Mills–
Higgs system at finite temperature will provide a transi-
tion from a regular system to a more chaotic system. It is
important to mention that in a quantum field theory the
presence of Higgs, a scalar field, provides a spontaneous
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Fig. 4. The level spacing histograms for the Yang–Mills–Higgs
system for the value of parameter ω = 0.01

breakdown of the ground state (or vacuum) symmetry.
The presence of temperature leads to a restoration of sym-
metry at some critical temperature. The results presented
here, even though for a classical system, provide a reflec-
tion of the restoration of symmetry as the temperature
is increased. Therefore for a classical system, Higgs leads
the Yang–Mills system that is chaotic to a regular system
while the temperature has an opposite effect leaving the
system in a more chaotic state.
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Fig. 5. Temperature as a function of θ
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